and he okayed me posting them here. He’s taking the idea of categorifying the Riemann zeta function, explained in my paper, and going further, imagining what it might mean to categorify Riemann’s ...
Very roughly speaking, F 4 \mathrm{F}_4 is the symmetry group of an octonionic qutrit. Of the two subgroups I’m talking about, one preserves a chosen octonionic qubit, while the other preserves a ...
Mar 26, 2025 The McGee group is one of the two smallest groups with an outer automorphism that preserves conjugacy classes. My route to understanding this fact was a long and winding one.
I’ve been blogging a bit about medieval math, physics and astronomy over on Azimuth. I’ve been writing about medieval attempts to improve Aristotle’s theory that velocity is proportional to force, ...
In Part 1, I explained my hopes that classical statistical mechanics reduces to thermodynamics in the limit where Boltzmann’s constant k k approaches zero. In Part 2, I explained exactly what I mean ...
I keep wanting to understand Bernoulli numbers more deeply, and people keep telling me stuff that’s fancy when I want to understand things simply. But let me try again.
When is it appropriate to completely reinvent the wheel? To an outsider, that seems to happen a lot in category theory, and probability theory isn’t spared from this treatment. We’ve had a useful ...
The study of monoidal categories and their applications is an essential part of the research and applications of category theory. However, on occasion the coherence conditions of these categories ...
such that the following 5 5 diagrams commute: (for f: x 0 → x 1 f:x_0\to x_1 and y ∈ 풞 y\in\mathcal{C}, we write f ⊗ y f\otimes y to mean f ⊗ id y: x 0 ⊗ y → x 1 ⊗ y f\otimes\operatorname{id}_y: ...
String diagrams are ubiquitous in applied category theory. They originate as a graphical notation for representing terms in monoidal categories and since their origins, they have been used not just as ...
Here is the statement as I understand it to be, framed as a bijection of sets. My chief reference is the wonderful book Elliptic Curves, Modular Forms and their L-Functions by Álvaro Lozano-Robledo ...
I don’t really think mathematics is boring. I hope you don’t either. But I can’t count the number of times I’ve launched into reading a math paper, dewy-eyed and eager to learn, only to have my ...